The Many-Faces Theorem
Theorem 1 (UNNS Many-Faces): Let U = (S, C, G, {μ_D}) be a UNNS system. Then:
- Linear recurrence embedding: Any linear recurrence a_n = cāa_{n-1} + ... + c_ra_{n-r} can be embedded.
- Dominant-root attractor: If the characteristic polynomial has unique dominant root r_d, then lim(s_{n+1}/s_n) = r_d.
- Modular domain partition: Residues mod m partition nests into m evolving domains.
- Cross-domain homomorphism: Constructive mappings exist between domain encodings.
- Computational completeness: With appropriate combinators, UNNS can simulate Turing machines.
Proof Sketch: Fibonacci Embedding
Construction:
UNNS System U = (S, C, G, μ_Z) where:
- S = ⤠(nests as integers)
- G = {0, 1} (seeds)
- C = {ā
} where ā
(x,y) = x + y
- μ_Z: S ā ⤠is identity
Sequence generation:
sā = 0, sā = 1
s_{n+1} = ā
(s_{n-1}, s_n) = s_{n-1} + s_n
Inductive Proof:
Base: sā = 0 = Fā, sā = 1 = Fā ā
Inductive step: Assume μ_Z(s_k) = F_k for k ⤠n
Then: μ_Z(s_{n+1}) = μ_Z(ā
(s_{n-1}, s_n))
= μ_Z(s_{n-1} + s_n)
= F_{n-1} + F_n
= F_{n+1} ā
Convergence: By Binet's formula,
F_n = (Ļāæ - Ļāæ)/ā5 where Ļ = (1+ā5)/2
Therefore: lim(F_{n+1}/F_n) = Ļ (golden ratio)
Python Verification Script
import json
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def verify_unns_convergence(sequence_data):
"""Verify UNNS convergence properties"""
values = sequence_data['values']
dominant = sequence_data['dominant_root']
# Calculate ratios
ratios = [values[i]/values[i-1]
for i in range(1, len(values))
if values[i-1] != 0]
# Calculate convergence errors
errors = [abs(r - dominant) for r in ratios]
# Fit exponential decay to error
x = np.arange(len(errors))
def exp_decay(x, a, b):
return a * np.exp(-b * x)
try:
popt, _ = curve_fit(exp_decay, x[5:], errors[5:])
print(f"Error decay rate: {popt[1]:.4f}")
except:
print("Could not fit exponential decay")
# Visualization
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# Sequence values
axes[0,0].semilogy(values[:50], 'b-', marker='o', markersize=3)
axes[0,0].set_title('Sequence Values (log scale)')
axes[0,0].set_xlabel('n')
axes[0,0].set_ylabel('Value')
axes[0,0].grid(True, alpha=0.3)
# Ratio convergence
axes[0,1].plot(ratios, 'g-', label='Ratios')
axes[0,1].axhline(y=dominant, color='r',
linestyle='--', label=f'Dominant root: {dominant:.6f}')
axes[0,1].set_title('Ratio Convergence')
axes[0,1].set_xlabel('n')
axes[0,1].set_ylabel('s(n+1)/s(n)')
axes[0,1].legend()
axes[0,1].grid(True, alpha=0.3)
# Error decay
axes[1,0].semilogy(errors, 'r-', label='Actual error')
if 'popt' in locals():
axes[1,0].semilogy(x, exp_decay(x, *popt),
'b--', label='Exponential fit')
axes[1,0].set_title('Convergence Error')
axes[1,0].set_xlabel('n')
axes[1,0].set_ylabel('|ratio - dominant root|')
axes[1,0].legend()
axes[1,0].grid(True, alpha=0.3)
# Modular partition (example with m=7)
m = 7
residues = [v % m for v in values[:100]]
axes[1,1].hist(residues, bins=m, alpha=0.7,
color='purple', edgecolor='black')
axes[1,1].set_title(f'Modular Partition (mod {m})')
axes[1,1].set_xlabel('Residue class')
axes[1,1].set_ylabel('Frequency')
axes[1,1].set_xticks(range(m))
axes[1,1].grid(True, alpha=0.3)
plt.suptitle(f"{sequence_data['sequence']} - UNNS Properties Verification")
plt.tight_layout()
plt.show()
return {
'final_ratio': ratios[-1] if ratios else 0,
'final_error': errors[-1] if errors else 0,
'convergence_rate': popt[1] if 'popt' in locals() else None
}
# Usage:
# Load exported JSON data from the visualization
with open('unns_fibonacci_50.json', 'r') as f:
data = json.load(f)
results = verify_unns_convergence(data)
print(f"Final convergence error: {results['final_error']:.2e}")
Key Insights
- Universality: UNNS provides a unified framework for diverse mathematical sequences
- Attractors: Dominant eigenvalues naturally emerge as geometric attractors
- Modularity: Residue classes create finite-state subsystems within infinite sequences
- Cross-domain mapping: The same sequence has multiple valid representations
- Computational power: With proper combinators, UNNS achieves Turing completeness